105 research outputs found

    Phylogeny of the Subfamilies of Ichneumonidae (Hymenoptera)

    Get PDF
    A combined morphological and molecular phylogenetic analysis was performed to evaluate the subfamily relationships of the parasitoid wasp family Ichneumonidae (Hymenoptera). Data were obtained by coding 135 morphological and 6 biological characters for 131 exemplar species of ichneumonids and 3 species of Braconidae (the latter as outgroups). The species of ichneumonids represent all of the 42 currently recognized subfamilies. In addition, molecular sequence data (cytochrome oxidase I “DNA barcoding” region, the D2 region of 28S rDNA and part of the F2 copy of elongation factor 1-alpha) were obtained from specimens of the same species that were coded for morphology (1309 base pairs total). The data were analyzed using parsimony and Bayesian analyses. The parsimony analysis using all data recovered previ-ously recognized informal subfamily groupings (Pimpliformes, Ophioniformes, Ichneumoniformes), al-though the relationships of these three groups to each other differed from previous studies and some of the subfamily relationships within these groupings had not previously been suggested. Specifically, Ophioni-formes was the sister group to (Ichneumoniformes + Pimplformes), and Labeninae was placed near Ich-neumoniformes, not as sister group to all Ichneumonidae except Xoridinae. The parsimony analysis using only morphological characters was poorly resolved and did not recover any of the three informal subfamily groupings and very few of the relationships were similar to the total-evidence parsimony analysis. The mo-lecular-only parsimony analysis and both Bayesian analyses (total-evidence and molecular-only) recovered Pimpliformes, a restricted Ichneumoniformes grouping and many of the subfamily groupings recovered in the total-evidence parsimony analysis. A comparison and discussion of the results obtained by each phylo-genetic method and different data sets is provided. It is concluded that the molecular characters produced results that were relatively consistent with traditional, non-phylogenetic concepts of relationships between the ichneumonid subfamilies, whereas the morphological characters did not (at least not by themselves). The inclusion of both molecular and morphological characters using parsimony produced a topology that was the closest to the traditional subfamily relationships. The method of analysis did not greatly affect the overall topology for the molecular-only analyses, but there were differences between Bayesian and parsi-mony results for the total-evidence analyses (especially near the root of the tree). The Bayesian results did not seem to be altered very much by the inclusion of morphological characters, unlike in the parsimony analysis. In summary, the following groups were supported in multiple analyses regardless of the characters used or method of tree-building: Pimpliformes, higher Ophioniformes, higher Pimpliformes, (Claseinae + Pedunculinae), (Banchinae + Stilbopinae), Campopleginae, Cremastinae, Diplazontinae, Ichneumoninae (including Alomya), Labeninae, Ophioninae, Poemeniinae, Rhyssinae, and Tersilochinae sensu stricto. Conversely, Ctenopelmatinae and Tryphoninae were never recovered without inclusion of other taxa. Based on the hypothesis of relationships obtained by the total-evidence parsimony analysis, the following formal taxonomic changes are proposed: Alomyinae Förster (= Alomya Panzer and Megalomya Uchida) is once again synonymized with Ichneumoninae and is now considered a tribe (Alomyini rev. stat.); and Notostilbops Townes is transferred from Stilbopinae to Banchinae, tribe Atrophini

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Hymenoptera of Canada

    Get PDF
    A summary of the numbers of species of the 83 families of Hymenoptera recorded in Canada is provided. In total, 8757 described species are recorded compared to approximately 6000 in 1979, which is a 46% increase. Of the families recognized in 1979, three have been newly recorded to Canada since the previous survey: Anaxyelidae (Anaxyleoidea), Liopteridae (Cynipoidea), and Mymarommatidae (Mymarommatoidea). More than 18,400 BINs of Canadian Hymenoptera are available in the Barcode of Life Data Systems (Ratnasingham and Hebert 2007) implying that nearly 9650 undescribed or unrecorded species of Hymenoptera may be present in Canada (and more than 10,300 when taking into account additional species that have not been DNA barcoded). The estimated number of unrecorded species is very similar to that of 1979 (10,637 species), but the percentage of the fauna described/recorded has increased from 36% in 1979 to approximately 45% in 2018. Summaries of the state of knowledge of the major groups of Hymenoptera are presented, including brief comments on numbers of species, biology, changes in classification since 1979, and relevant taxonomic references

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≀5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    First record of Nesomesochorinae (Hymenoptera: Ichneumonidae) from America north of Mexico with descriptions of two new species of Nonnus Cresson

    No full text
    Wahl, David B., Bennett, Andrew M.R. (2020): First record of Nesomesochorinae (Hymenoptera: Ichneumonidae) from America north of Mexico with descriptions of two new species of Nonnus Cresson. Zootaxa 4779 (1), DOI: https://doi.org/10.11646/zootaxa.4779.1.
    • 

    corecore